
1

High performance graph algorithms
from parallel sparse matrices

Viral Shah
University of California, Santa Barbara

John R. Gilbert, UCSB

Steven Reinhardt, SGI

Support: DOE Office of Science, DARPA, SGI, ISC

2

Power method in Star-P

A = sprandn(4000*p, 4000, 0.1);

x = randn(4000*p, 1);

y = zeros(size(x));

while norm(x-y) / norm(x) > 1e-11

y = x;

x = A * x;

x = x ./ norm(x);

end

3

MATLAB®

Star-P Architecture

Ordinary Matlab variables

Star-P

client manager

server manager

package manager

processor #0

processor #N-1

processor #1

processor #2

processor #3

. .
 .

ScaLAPACK
FFTW
FPGA interface

matrix manager Distributed matrices

UPC user code

sort
dense/sparse

UPC user code

MPI user code

4

P0

P1

P2

Pn

5941 532631

23 131

Each processor stores:
• # of local nonzeros (# local edges)
• range of local rows (local vertices)
• nonzeros in a compressed row

data structure (local edges)

Distributed sparse array

1

2 3
26

53

41
31

59

5

Sparse matrix operations

• A = sparse(i, j, Aij);

• [i j Aij] = find(A);

• Matrix operators: +, -, max, sum, & etc.

• matrix * vector, matrix * matrix

• Matrix indexing and concatenation

A (1:3, [4 5 2]) = [B(:, 7) C] ;

• A \ b by direct methods (SuperLU_dist) and iterative
methods

• Eigensolvers (PARPACK): eigs(), svds()

6

Combinatorics in Star-P

• Represent a graph as a sparse adjacency matrix

• A sparse matrix language is a good start on primitives
for computing with graphs

– Random-access indexing: A(i,j)

– Neighbor sequencing: find (A(i,:))

– Sparse table construction: sparse (I, J, V)

– Breadth-first search step : A * v

7

Breadth-first search: sparse mat * vec

• Multiply by adjacency matrix � step to neighbor vertices

• Efficient implementation from sparse data structures

x ATx

1 2

3

4 7

6

5

AT

�

8

Breadth-first search: sparse mat * vec

• Multiply by adjacency matrix � step to neighbor vertices

• Efficient implementation from sparse data structures

AT ATx (AT)2x

�

1 2

3

4 7

6

5

9

Maximal Independent Set

1 2

3

4 7

6

5

deg = sum(G, 2);

prob = 1 ./ (2 * deg);

select = rand (n, 1) < prob;

neigh = select & (G * select);

if ~isempty (neigh)

% keep higher degree vertices

end

IS = [IS select];

neigh = neigh | (G * select);

remain = neigh == 0;

G = G(remain, remain);

Select a subset of
graph vertices
randomly as an initial
guess of the

independent set

10

Maximal Independent Set

1 2

3

4 7

6

5

deg = sum(G, 2);

prob = 1 ./ (2 * deg);

select = rand (n, 1) < prob;

neigh = select & (G * select);

if ~isempty (neigh)

% keep higher degree vertices

end

IS = [IS select];

neigh = neigh | (G * select);

remain = neigh == 0;

G = G(remain, remain);

If neighbouring nodes
are picked, keep the
higher degree
vertices.

Add selected vertices
to the independent

set.

11

Maximal Independent Set

1 2

3

4 7

6

5

deg = sum(G, 2);

prob = 1 ./ (2 * deg);

select = rand (n, 1) < prob;

neigh = select & (G * select);

if ~isempty (neigh)

% keep higher degree vertices

end

IS = [IS select];

neigh = neigh | (G * select);

remain = neigh == 0;

G = G(remain, remain);

Discard neighbours of
the independent set.

Iterate the same
process on the
remaining subgraph.

12

Connected components of a graph

• Sequential Matlab uses depth-first search (dmperm),
which doesn’t parallelize well

• Shiloach-Vishkin pointer-jumping algorithm:
– repeat

• Link every (super)vertex to a neighbor
• Shrink each tree to a supervertex by pointer jumping

– until no further change

• Hybrid SV / search method under construction

• Other possible graph kernels:
– Shortest-path search (after Husbands, LBNL)
– Bipartite matching (after Riedy, UCB)
– Strongly connected components (after Pinar, LBNL)

13

SSCA#2: “Graph Analysis”

• Fine-grained, irregular data
access

• Searching and clustering
• Goal is scaling to very large

graphs
• Graphs specified by a scalable

data generator

Four computational kernels:

• Kernel 1: Build graph data structure

• Kernel 2: Search by edge labels

• Kernel 3: Extract subgraphs

• Kernel 4: Partition into clusters

QuickTime™ and a
Sorenson Video 3 decompressor
are needed to see this picture.

14

• Scalable data generator (Spec 1.1)

• Input data is edge triples < i, j, weight(i,j) >
• Many tight clusters, loosely interconnected

• Vertex and edge orders permuted randomly

SSCA#2: Graph Statistics

366,003,600,0001,317,613,000,0002,096,2641,073,741,82430
3,597,598,00012,951,350,000207,08233,554,43225

35,052,403126,188,64920,6431,048,57620
344,1161,238,8152,02032,76815

3,67013,2121861,02410
#Edges Undirected#Edges Directed#Cliques#VerticesScale

15

Concise SSCA#2 in Star-P

Kernel 1: Construct graph data structures
• Graphs are dsparse matrices, created by sparse()

16

Kernels 2 and 3

Kernel 2: Search by edge labels

• About 12 lines of executable Matlab or Star-P

• Essentially uses find()

Kernel 3: Extract subgraphs

• Returns subgraphs consisting of vertices and edges within
fixed distance of given starting vertices

• Sparse matrix-matrix multiplication for several simultaneous
breadth-first searches

• About 25 lines of executable Matlab or Star-P

17

Kernel 4: Vertex clustering

% Grow each seed to vertices

% reached by at least k

% paths of length 1 or 2

C = sparse(seeds,1:ns,1,n,ns);

C = A * C;

C = C + A * C;

C = C >= k;

• Grow local clusters from many seeds in parallel

• Breadth-first search by sparse matrix * matrix

18

Kernel 4: Peer pressure

110

8 25

46

1311

7 9

3 12

Steps in a peer pressure algorithm:

1. Vote for a leader

2. Collect neighbour votes

3. Vote for a new leader

(based on neighbour votes)

• Quality of clustering depends on the choice of algorithms
used for the different steps above.

• The set of possible leaders should be small. MIS is a good
choice. For SSCA#2, max works equally well.

• Neighbour votes maybe combined using different weights.

• All versions of kernel4 are about 25 lines of code.

19

Kernel 4: Peer pressure

1313

13 125

511

1313

13 13

12 12

[ign leader] = max (G, [], 2);

S = G *
sparse(1:n,leader,1,n,n);����

[ign leader] = max (S, [], 2);

• Every vertex votes for its highest numbered neighbour as its
leader - No communication is required

• The size of the leader set is approximately the number of
clusters - which is small relative to the number of nodes

• Discovers original graph structure right away �

20

Kernel 4: Peer pressure

1213

12 125

55

1313

13 13

12 12

[ign leader] = max (G, [], 2);

S = G *
sparse(1:n,leader,1,n,n);����

[ign leader] = max (S, [], 2);

• Matrix multiplication gathers neighbour votes

• Every nonzero in each row corresponds to a leader - Its value
denotes the number of neighbour votes for that leader

• >95% of the original graph structure is recovered at this point

• Very small clusters may attach themselves to nearby clusters

21

Scaling up

Recent runs of cSSCA#2 on SGI Altix (up to 128 processors):

• Have run the entire benchmark on graphs with 226 = 67 million
vertices, 890 million directed edges, 247 million undirected edges -
(ver 0.9 of the spec)

• Benchmarking in progress for ver 1.1 of the spec

• Have built graphs with 400 million vertices and 4 billion edges

• Timings scale well – for large graphs,

• 2x problem size � 2x time
• 2x problem size & 2x processors � same time

22

Toolbox for Graph Analysis and
Pattern Discovery

Layer 1: Graph Theoretic Tools

• Graph operations
• Graph generators
• Graph partitioning and clustering
• Graph theoretic preconditioners
• Visualization and graphics
• Scan and combining operations
• Utilities

23

Thank You

Questions.

24

Toolbox Status

• Graph algorithms: independent sets, connected components,
strongly connected components, shortest paths, bipartite matching,
graph coloring, spanning trees

• Graph partitioning and mesh generation: Simple 2d and 3d mesh
generators, stencil operators, spectral partitioners, geometric
partitioners, multilevel partitioners (ParMETIS hookup)

• Solution of linear systems: Preconditioned iterative methods,
support graph preconditioners, algebraic multigrid, sparse
approximate inverse preconditioners

25

Extra Slides

